784(t)=-16t^2+784

Simple and best practice solution for 784(t)=-16t^2+784 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 784(t)=-16t^2+784 equation:



784(t)=-16t^2+784
We move all terms to the left:
784(t)-(-16t^2+784)=0
We get rid of parentheses
16t^2+784t-784=0
a = 16; b = 784; c = -784;
Δ = b2-4ac
Δ = 7842-4·16·(-784)
Δ = 664832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{664832}=\sqrt{12544*53}=\sqrt{12544}*\sqrt{53}=112\sqrt{53}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(784)-112\sqrt{53}}{2*16}=\frac{-784-112\sqrt{53}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(784)+112\sqrt{53}}{2*16}=\frac{-784+112\sqrt{53}}{32} $

See similar equations:

| 18=3(d−1) | | -2x+8(4x-8)=-244 | | 200=100(104)^x | | 6+3r=–9 | | x=15x−1=3+x | | H(t)=-16^2+5184 | | 3^x+1+3^x=54 | | 5x−1=3+x | | 3x=15=4 | | m7=–4 | | 650m+10m=60m+400 | | x/100=10/50 | | 6x+9=4x−3/2x+9=-3 | | x+.1x=12 | | 9j=508 | | -3n+4=18 | | -2x-2=-6x-2 | | -42=-6h | | 14x-166=4x+74 | | 40=-16t^2+40t+1.5 | | k−3=1 | | 4+n3=1 | | -1/4x+5=4 | | x*12+18=192 | | f(0.8)=f(0.8) | | 5t-3=-10+4t | | -m^2-12m+4=0 | | x*2.5=67.5 | | 24+3^x=3^x+18 | | 8+9n+10=-10+5n | | 4a+8=51 | | b*15=3 |

Equations solver categories